2025

Biology & Chemistry Junkanoo Integration

HIGH SCHOOL SCIENCES UNIT E.O. MIRIAM ARMBRISTER

CURRICULUM AND INSTRUCTION DIVISION

JUNKANOO INTEGRATION

SUBJECT: Diffusion and Osmosis

Pacing Guide Week #	Topic (As displayed on the Pacing Guide)	Objectives (As outlined in the Curriculum)	Integration Strategy (Activities)	Resources
Week One January 6-9, 2025	Transport in Cells	Use coloured substances to demonstrate diffusion. Observe diffusion of substances in air and liquids. Illustrate examples of diffusion in the human body.	Lesson Activity: "How Cells Stay Active During Junkanoo" Begin by discussing the importance of cellular processes like diffusion in maintaining the body's energy levels. Relate this to how people participating in strenuous activities, like dancing or playing drums in Junkanoo, rely on their cells to perform efficiently.	KMnO₄ Crystals

			Explain how diffusion helps transport oxygen to muscles during activities like parades or performances.	
Week Two January 13-17, 2025	Transport in Cells	Perform an experiment to show osmosis. Use apparatus and materials to demonstrate osmosis. Measure materials needed for osmosis experiment. Make observations of osmosis.	Discuss how festival participants need to stay hydrated. Link this to osmosis, where water moves into cells to keep them functioning. Experiment: Simulating Diffusion and Osmosis Provide students with materials to simulate these processes Show how substances like water and nutrients move in and out of cells during physical activity.	Beaker with water, salt, sugar, dialysis tubing, (cellophane) and starch solutions).
Week Three January 20-24, 2025		Formulate a conclusion from Experiments on diffusion and Osmosis Describe simply the process of active transport.	Interactive Role-Play Assign students roles as "water molecules," "salt," or "cell membranes" to act out diffusion and osmosis scenarios.	

		Create a scenario where "cells" of dancers or drummers absorb water (osmosis) or exchange oxygen and carbon dioxide (diffusion). Adjust players to represent active transport.	
Week Four January 27-31, 2025	Compare and contrast the mechanisms of simple diffusion, facilitated diffusion osmosis and active transport. Classify each type of transport in cells as passive or active.	Reflection and Discussion Ask students to describe how understanding these processes helps us care for our bodies during physically demanding activities. Discuss the significance of hydration and nutrition for Junkanoo participants.	

CURRICULUM AND INSTRUCTION DIVISION

JUNKANOO INTEGRATION

SUBJECT: The Human Heart

Pacing Guide Week # Week One January 6-9, 2025	Topic (As displayed on the Pacing Guide) The Human heart	 Objectives (As outlined in the Curriculum) Observe the external and internal appearance of the human heart. Draw and label the external features of a mammalian heart. Use a scalpel or other cutting utensil to dissect the heart of a mammal. Use a magnifying lens to observe the structure of the structure of	Integration Strategy (Activities) Discussion about Junkanoo, highlighting activities like dancing, drumming, or carrying floats. Pose a question: What happens to your heart when you engage in these activities? Use a quick demonstration: have students jog in place for	Resources
		 Observe the internal structure of a mammalian heart. Relate the structures of the heart to their function. Show the direction through which blood flows through the heart. 	 pulse. Discuss their observations. Use a model or diagram to show the heart's chambers, valves, and blood flow path. Explain how the heart rate increases during strenuous activities to supply muscles with more oxygen. 	

Week Two January 13-17, 2025	 Design investigations to determine the effects of external factors on heartbeat. Show the direction through which blood flows through the heart. 	Hands-On Activity: "Heartbeat Race" – Skill B or C BGCSE Coursework Students will measure their resting heart rates, then perform different festival-like activities (e.g., miming drumming, dancing, or running in place for 2 minutes). Record their heart rates after each activity and plot them on a graph to analyse trends. Discuss why heart rates increase and the importance of recovery time.	Stopwatches, charts, and markers.
Week Three January 20-24, 2025	Research the common causes and effects of heart disease. Describe the relationship between intake of dietary cholesterol and fatty deposits on artery walls. Use sphygmomanometer to measure blood press	Junkanoo Connection Discuss the role of physical activity in festivals from around the world. Highlight how the human heart supports endurance in traditional activities (e.g., drummers maintaining rhythms, dancers performing routines).	sphygmomanometer

		Relate this to health: how a strong heart supports Junkanoo expressions.Discuss dangers of rushing with a un healthy heart. Recap how the heart works harder during festivals. Ask students: Why is it important to maintain heart health, especially for Rushing activities?Encourage students to share their favourite Junkanoo activities and discuss how they can care for their hearts
Week Four January 27-31, 2025	Construct a model of the human heart.	during them. 78Construct a model of the heart using Junkanoo techniques.Crepe paper, glue, tricks etc.Students create a diagram or drawing that shows the connection between the heart, muscles, and Junkanoo.Fincourage them to label how oxygen and nutrients travel to support energy and

CURRICULUM AND INSTRUCTION DIVISION

JUNKANOO INTEGRATION

SUBJECT: Endocrine System

Pacing Guide Week	Торіс	Objectives	Integration Strategy	Resources
#	(As displayed on the Pacing	(As outlined in the Curriculum)	(Activities)	
	Guide)			
Week One		Distinguish between exocrine and	Iset the stage: Describe	
January 6-9,		endocrine glands.	Junkanoo with activities like	
2025			dancing, drumming, and	
		Identify the major endocrine glands.	playing instruments	
			Pose the question: <i>How</i>	
		Match hormones to the glands that	does the body prepare for and	
		secrete them.	sustain energy during such a	
			festival?	
			Is Briefly introduce key	
			endocrine glands (e.g.,	
			adrenal glands, pancreas,	
			pineal gland etc.).	
			I Explain their roles: e.g.	
			Adrenal glands: Release	
			adrenaline to boost energy	

		and heart rate during physical	
		activity.	
		Pancreas: Regulates blood	
		sugar for energy.	
		Relate these functions to	
		Junkanoo activities like	
		staying alert and energetic	
		during night time	
		performances.	
Week Two	Make a visual presentation to	Interactive Activity: "Gland	Materials: Gland cards,
January 13-17,	describe the importance of	Relay"	role descriptions, and
2025	maintaining a specific amount of a		props.
	hormone in the body.	Divide students into groups	
		and assign roles as glands,	
		hormones, or body parts	
		(e.g., muscles, heart).	
		Create scenarios: "The	
		dancers need energy for their	
		routine." Students role-play	
		how glands release hormones	
		(adrenaline, insulin) and how	
		these hormones act on body	
		parts.	
		Include night time factors	
		such as melatonin levels	
		being lower to stay alert.	

Week Three	Rate the importance of the pancreas	Experiment: Hormonal	Materials: Sugar solution,
January 20-24,	and adrenal glands compared with	Impact on Energy	timers, and activity
2025	two other organs.		prompts.
		Simulate the pancreas' role:	
		Students drink a small	
		amount of sugar water, then	
		perform a short physical	
		activity (e.g., jumping jacks).	
		Discuss how insulin helps cells	
		use sugar for energy and how	
		this relates to sustaining	
		activity during the festival.	
Week Four	Continuation of previous week's	Cultural and Biological	
January 27-31, 2025	objectives	Reflection	
		Discuss: How adrenaline	
		helps performers stay	
		energetic during a parade.	
		How the body balances	
		melatonin to stay awake at	
		, viaht	
		night.	
		How proper putrition and	
		How proper nutrition and	
		How proper nutrition and hydration support the	
		How proper nutrition and hydration support the endocrine system during festivals	

	Creative Connection	
	Students create a comic strip or short story showing how the endocrine system helps someone participate in a cultural festival at night.	
	Share and discuss their creations.	

CHEMISTRY The Chemistry of Junkanoo

DEPARTMENT OF EDUCATION CURRICULUM AND INSTRUCTION DIVISION

......

JUNKANOO INTEGRATION

SUBJECT: Chemistry – Atomic Structure

Pacing Guide Week #	Торіс	Objectives	Integration Strategy (Activities)	Resources
Week One January 6-9, 2025	Atomic Structure	The relative mass and charge of protons, neutrons and electrons	"Atomic Structure and Junkanoo"	
			Building Blocks of Junkanoo Begin by asking: What makes up the materials used in Junkanoo—drums, costumes, floats, or even the energy we use to perform?	
			Relate these to atoms as the building blocks of everything, including the materials and energy used in a cultural festival.	

Veek Two	Atomic number, mass number,	Atomic Basics: Relative Mass
inuary 13-17,	isotopes and relative atomic mass.	and Charge:
025		
		Explain the structure of the
		atom, focusing on protons
		(positive charge, relative
		mass = 1), neutrons (no
		charge, relative mass = 1),
		and electrons (negative
		charge, relative mass = ~0).
		Atomic Number and Mass
		Number:
		Define atomic number
		(number of protons) and
		mass number (protons +
		neutrons)
		Relate atomic number to an
		element's "identity," just as
		Junkanoo has unique
		elements.
		Isotopes and Relative Atomic
		Mass:
		Use the concept of isotopes
		to explain how some
		elements have variations with
		different numbers of
		neutrons.

		Discuss relative atomic mass as a weighted average, just as Junkanoo might average the participation of groups over years.	
Week Three January 20-24, 2025	Use the mass number and atomic number to calculate the particles (protons, neutrons and electrons) in an atom. Simple electronic structure of atoms (first 20 elements with Lewis dot diagrams).	Hands-On Activity: Junkanoo Atom Models Students create a model of an "Junkanoo atom parade," with beads representing protons, neutrons, and electrons: Protons = Drummers (positive energy) Neutrons = Dancers (neutral but adding to the parade mass) Electrons = Spectators (negative charge but buzzing with energy). Assign atomic numbers and mass numbers to their models and label isotopes.	Coloured beads, glue, small sticks, and baseboards.

Week Four January 27-31, 2025	Construct Bohr model of an atom.	Hands-On Activity: Junkanoo Atom Models	Coloured beads, glue, small sticks, and baseboards.
	The relationship between the outer electronic structure and their groupings into families.	Students create a model of an "Junkanoo atom parade," with beads representing protons, neutrons, and electrons:	
		Protons = Drummers (positive energy)	
		Neutrons = Dancers (neutral but adding to the parade mass)	
		Electrons = Spectators (negative charge but buzzing with energy).	
		Assign atomic numbers and mass numbers to their models and label isotopes.	
		Role-Playing Game: Atomic Junkanoo Parade	
		Students act out an "atomic Junkanoo parade": Drummers (protons) and dancers (neutrons) march at the centre.	

	Spectators (electrons) form a	
	buzzing outer ring, "orbiting"	
	the core.	
	Introduce isotopes by varving	
	the number of dancers	
	(neutrons) while keeping the	
	number of drummers	
	(protons) constant	
	Discuss how this relates to	
	isotonic variations	
	Real-Life Connection:	
	lunkanoo Materials	
	Discuss how elements like	
	iron (Eq) in drums or connor	
	(Cu) in wires are made up of	
	(cu) in whes are made up of	
	atoms with specific atomic	
	and mass numbers.	
	Explore isotopes used in	
	Lighting or energy sources	
	lighting of energy sources	
	(c.g., cal boll isolopes in fireworks chemistry)	
	meworks chemistry).	
	Poloto this to the operat	
	required for dancors	
	drummers, and exectators	
	arummers, and spectators,	
	linking atomic-level processes	
	to physical energy.	

	Creative Reflection: Junkanoo Atomic Poster	
	Students create a poster connecting the components of a Junkanoo to atomic structure (e.g., "Drums powered by iron atoms: Atomic number 26, mass number 56").	
	Include isotopic variations and the role of relative atomic mass in materials used for Junkanoo lead pieces and costumes.	

CURRICULUM AND INSTRUCTION DIVISION

JUNKANOO INTEGRATION

SUBJECT: Acids, Bases and Salts

GRADE: 11 Chemistry

Pacing Guide Week #	Торіс	Objectives	Integration Strategy (Activities)	Resources
Week One January 6-9,	Acids, Bases and Salts	Acids, Bases and Salts.	Junkanoo Chemistry	
2025		Acids: General properties of acids.	Discuss: What kinds of materials or reactions do you think are involved in Junkanoo?	
		Chemical reactions of acids in aqueous solution.	Highlight examples: Bright colours in Junkanoo decorations (acid-base indicators).	
			Salts used in fireworks and dyes.	
			Food and beverages with acidic or basic properties.	
Week Two January 13-17,		Basicity of an acid. Acid Anhydrides. Acids in living	Basics of Acids, Bases, and Salts	
2025		systems Bases & Alkalis: General properties of alkalis.		

		 Acids: Sour taste, pH < 7, found in citrus fruits, and used in cleaning agents for festival preparation. Bases: Bitter taste, slippery, pH > 7, used in soap and paint for decorations. Salts: Formed from the reaction of acids and bases, used in preserving food and making dyes. Introduce pH scale and neutralization reactions: Acid+Base→Salt+Water 	
Week Three January 20-24, 2025	Chemical reactions of bases. Indicators and pH scale to determine acidity, alkalinity and neutrality	 Experiment: pH and Colourful Decorations Test the pH of different festival-related materials (e.g., lemon juice for acidic properties, soapy water for basic properties). Use red cabbage juice as a natural indicator to see how acidic or basic substances change colours, mimicking vibrant festival hues. 	Litmus paper, turmeric powder, red cabbage juice, and festival items like coloured dyes.
Week Four January 27-31, 2025	Continuation of previous week objectives	Hands-On Activity: Making Festival Salts Conduct a neutralization reaction to form a salt (sodium acetate): CH3COOH+NaHCO3→CH3COONa+H2O+CO2	Vinegar (acid), baking soda (base), small beakers, and heat sources.

Relate the process to making salts for preserving food or enhancing fireworks.Fireworks and Dyes Connection (15 minutes)
Discuss how salts of metals produce colourful fireworks (e.g., sodium for yellow, copper for green).
Sometimes Junkanoo groups use sparklers on their lead pieces
Show pictures or videos of firework displays and identify the salts responsible for the colours.
Creative Reflection: Junkanoo Chemistry Poster
Students design a poster showcasing how acids, bases, and salts are used in various aspects of Junkanoo, such as cleaning, food, decorations, laser lights, fireworks.

CURRICULUM AND INSTRUCTION DIVISION

JUNKANOO INTEGRATION

SUBJECT: Metals

Pacing Guide Week #	Topic (As displayed on the Pacing Guide)	Objectives (As outlined in the Curriculum)	Integration Strategy (Activities)	Resources
Week One January 6-9, 2025	Metals	Metals The reactivity series of metals. Extraction of metals from their ores. Properties of Metals.	 The Sound of Chemistry. Discussion: What are Junkanoo musical instruments made of, and why are metals commonly used? Highlight examples: Tubas, horns, trumpets: Made of brass (an alloy of copper and zinc). Cowbells: Often made of steel (iron-carbon alloy). 	

	Drum frames: Typically	
	aluminium or steel for	
	lightweight durability.	
	Properties of Metals	
	roperties of metals	
	Physical Properties: Lustrous,	
	malleable, ductile, and good	
	conductors of heat and	
	electricity.	
	Chemical Properties:	
	Reactivity with oxygen, acids	
	and water leading to	
	correction or tarnishing	
	corrosion or tarnishing.	
	Relate these properties to	
	why metals are chosen for	
	instruments:	
	Brass produces rich sound	
	due to its density and	
	malleability	
	mancability.	
	Charalla shuna bilita una bua di	
	Steel's durability makes it	
	ideal for cowbells and drum	
	frames.	

Week Two		Extraction of Aluminium.	Experiment: Sound and	Small metal plates or rods
January 13-17,	Metals		Metal Density	of different metals (e.g.,
2025		Extraction of Iron. Blast furnace.		aluminium, copper, and
			Students strike each metal to	steel), a mallet or stick,
		The role of limestone.	compare the sound	and a resonance board
			produced.	
			Discuss how density and	
			composition affect sound	
			quality and pitch.	
			Relate this to why specific	
			metals are used in	
			instruments like trumpets or	
			cowbells.	
Week Three		Creative Reflection	Chemistry in Instrument	
January 20-24,			Design	
2025	Metals			
			Activity: Students design	
			their own festival instrument	
			using a metal of their choice.	
			Include a brief explanation of	
			why they chose the metal	
			based on its properties (e.g.,	
			malleability, resonance).	
Week Four		Alloys and uses of alloys.	Cultural Connection: Metals	
January 27-31, 2025	Metals		in Junkanoo Instruments	
			Explore how traditional	
			materials like goat skin are	

	paired with modern metal frames for drums.
	Compare how different cultures use specific metals (e.g., brass trumpets in parades, steel cowbells in rhythm sections).
	Discuss how the chemistry of alloys (e.g., brass and bronze) enhances the sound and durability of instruments.